
CS 4530: Fundamentals of Software Engineering
Lesson 1.3 Object-Oriented Design Principles

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Outline of this lesson
1. Reminder:

• the purposes of the principles
• Difficulties the principles should help with

2. Five principles for OO systems

2

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Describe the purpose of our design principles
• List five object-oriented design principles and illustrate

their expression in code
• Identify some violations of the principles and suggest

ways to mitigate them

3

The Challenge: Controlling Complexity
• Software systems must be comprehensible by

humans
• Why? Software needs to be maintainable

• continuously adapted to a changing environment
• Maintenance takes 50–80% of the cost

• Why? Software needs to be reusable
• Economics: cheaper to reuse than rewrite!

4

Five Principles for OO Programming

5

Five Principles for OO Programming
1. Make Your Interfaces Meaningful
2. Depend only on behaviors, not their implementation
3. Keep Things as Private as You Can
4. Favor Dynamic Dispatch Over Conditionals
5. Favor Interfaces Over Subclassing

Make a sticky note with
this list, too.

Principle 1: Make Your Interfaces Meaningful
• Interfaces are the thing we use to specify the

behavior of the classes and objects that implement
them.

• We use the word behavior to mean what a single
method does:

• Returning a value is a behavior
• Having some kind of side-effect (mutation, I/O, etc.) is a

behavior
• For our purposes today, we don’t mean anything

else, like how much memory or time a program
uses.

6

Review: TypeScript interfaces

7

// getx(), gety() return the x,y coordinates of the point
interface AbsPoint {getx():number, gety():number}

class CartesianPoint implements AbsPoint {
constructor (private x : number, private y : number) {}
getx() {return this.x}
gety() {return this.y}

}

// r is radius, theta is angle (in radians)
class PolarPoint implements AbsPoint {

constructor (private r:number, private theta:number) {}
getx() {return this.r * Math.cos(this.theta)}
gety() {return this.r * Math.sin(this.theta)}

}

const point1 = new CartesianPoint(0.0, 1.0)
const point2 = new PolarPoint(1.0, Math.PI/2.0)

Go review your Typescript
materials if you need to
and then come back to
this lesson...

Interfaces are where we specify behaviors
• A temperature sensor is something that returns the

current temperature at the sensor's location:

• Note that the interface specifies both syntax (the
method name) and the semantics (what the
method returns or what it does).

8

// temperatures are measured in Celsius
type Temperature = number

interface AbsTemperatureSensor {
// returns the current temperature at the sensor location
getTemperature () : Temperature

}

We have many classes that implement the
same interface
• In a kitchen, for example, we might have

9

class Model101Thermometer implements AbsTemperatureSensor {
getTemperature () : Temperature {...}
...

}

class AmazonCheapThermometerModel2034 implements AbsTemperatureSensor {
getTemperature () : Temperature {...}
...

}

class VikingRefrigeratorThermometerModel178 implements AbsTemperatureSensor {
getTemperature () : Temperature {...}
...

} These all probably
work in very
different ways!

But the compiler only checks syntax, not
semantics
• If we defined a class that had a getTemperature

method, but that did not return the temperature at
the sensor location, this would not be a correct
implementation of AbsTemperatureSensor. For
example:

• The compiler would accept this, but we shouldn't.

10

class NotReallyASensor implements AbsTemperatureSensor {
getTemperature () {return 42}

}

Just for fun, make up
3 more classes that
the compiler would
accept but are not
correct
implementations of
AbsTemperatureSenso
r.

Remember: one interface/one job
• Just like one function/one job...
• If you have a class that needs to advertise two sets

of behaviors, you can always have it implement two
interfaces.

• The fancy name for this is interface segregation.

11

Principle 2: Depend only on behaviors, not
their implementation

12

class TemperatureMonitor {
constructor(

private sensor: AbsTemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: AbsAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface AbsAlarm { soundAlarm(): void }

Principle 2: Depend only on behaviors, not
their implementation

13

class TemperatureMonitor {
constructor(

private sensor: AbsTemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: AbsAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface AbsAlarm { soundAlarm(): void }

Your new Vocabulary Word:
Dependency Inversion

14

class TemperatureMonitor {
constructor(

private sensor: AbsTemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: AbsAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface AbsAlarm { soundAlarm(): void }

Another vocabulary word: Composition

15

class TemperatureMonitor {
constructor(

private sensor: AbsTemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: AbsAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface AbsAlarm { soundAlarm(): void }

Yet another vocabulary word: Delegation

16

class TemperatureMonitor {
constructor(

private sensor: AbsTemperatureSensor,
private maxTemp: Temperature,
private minTemp: Temperature,
private alarm: AbsAlarm,

) { }

// if the sensor is out of range, sound the alarm
public checkSensor(): void {

let temp: Temperature = this.sensor.getTemperature()
if ((temp < this.minTemp) || (temp > this.maxTemp))
{ this.alarm.soundAlarm() }

}
}
// sounds an alarm
interface AbsAlarm { soundAlarm(): void }

Principle 3: Keep Things as Private as You
Can
• In general, you don't know who is using your code
• You don't want people messing with your data.

• You might have some invariants that your code depends
on, and somebody else might come in and break them.

• You don't want people depending on the details of
your code.

• If you change your details, you might break somebody
else's code, which would be BAD.

17

Example (1)

18

// getCounter () always returns an even number
// bumpCounter (n) increases the value of the counter
interface Interface1 {

getCounter () : number
bumpCounter (n:number) : void

}

class Class1 implements Interface1 {
private counter = 0
// INVARIANT: counter is even
public getCounter() { return this.counter }
public bumpCounter (n: number): void {

// the interface didn't say anything about what do with n.
this.counter = this.counter + 2

}
}

Example (2)

19

class Class2 implements Interface1 {
public counter = 0
// INVARIANT: counter is even
public getCounter() { return this.counter }
public bumpCounter (n: number): void {

// the interface didn't say anything about what do with n.
this.counter = this.counter + 2

}
}

let o = new Class2();
o.counter++;
console.log(o.getCounter()) // prints 1

Example (3)

20

class Class2 implements Interface1 {
public c = 0
// INVARIANT: counter is even
public getCounter() { return this.c }
public bumpCounter (n: number): void {

// the interface didn't say anything
// about what do with n.
this.c = this.c + 2

}
}

let o = new Class2();
o.counter++; // compiler error!
console.log(o.getCounter()) // prints 1

Principle 4: Favor Dynamic Dispatch Over
Conditionals
• We’d like to arrange things so that you can extend

your system by adding code, rather than changing
it.

• We already saw this in the TemperatureSensor
example.

• Let's look at another example.

21

A Tiny Shape-Manipulation System
• We want to represent two kinds of shapes: squares

and circles
• All we have to do is compute the area of a shape.

22

Naïve representation

23

type Shape = Square | Circle

export class Square {
constructor (public side: number) {}

}

export class Circle {
constructor (public radius: number) {}

}

export function area (s:Shape) : number {
if (s instanceof Square) {

return s.side * s.side
} else if (s instanceof Circle) {

return Math.PI * s.radius * s.radius
}

}

Let’s add a new kind of shape to the system

24

// represents ncopies of base shape, arranged in a row without overlaps
export class ShapeArray {

constructor (public base: Shape, public ncopies: number) {}
}

We need to modify our existing code to
incorporate this

25

type Shape = Square | Circle | ShapeArray

export class Square { ... }
export class Circle { ... }

// represents ncopies of base shape, arranged in a row
export class ShapeArray {

constructor (public base: Shape, public ncopies: number) {}
}

export function area (s:Shape) : number {
if (s instanceof Square) {

return s.side * s.side
} else if (s instanceof Circle) {

return Math.PI * s.radius * s.radius
} else if (s instanceof ShapeArray) {

return s.ncopies * area(s.base)
}

}

A better idea: use an interface!

26

export interface Shape {
area() : number

}

export class Square implements Shape {
constructor(private side: number) { }
area() : number { return this.side * this.side }

}

export class Circle implements Shape {
constructor (private radius: number) {}
area() : number { return Math.PI * this.radius * this.radius}

}

This is "classic" object-oriented design
• Classic OO says: package the operations with the

class.

27

To add a new shape,
you just add code

28

• No need to modify existing code!

// represents ncopies of base shape, arranged in a row
export class ShapeArray implements Shape {

constructor (public base: Shape, public ncopies: number) {}
area() : number { return this.ncopies * this.base.area() }

}

Now s.area() works on any shape
• The old code exported area as a function, so if we

wanted, we could say

29

export function area (s:Shape) : number {
return s.area()
}

// import {Square, Circle, ShapeArray, area} from './area1'
import {Square, Circle, ShapeArray, area} from './area2'

describe("tests of area", () => {
test("test of square", () => {

expect(area(new Square(2))).toBe(4)
})

test("test of circle", () => {
expect(area(new Circle(2))).toEqual(Math.PI*4)

})

test("test of ShapeArray", () => {
expect(area(new ShapeArray(new Square(2), 3))).toEqual(12)

})

// etc

The new version works exactly like the old
version

• We can use the
same tests for
either one.

30

Adding new shapes is easy. What about
adding new operations?
• Here we knew the operation(s) in advance
• What if we wanted to add new operations to an

existing code base
• Need to add a new operation to the interface

(easy– all in one place)
• Need to implement the new operation in each class

that implements the interface (might be harder–
might be scattered across code base.)

• There’s a solution to this, called the Visitor Pattern
• But that’s beyond the scope of this lesson.

31

Another vocabulary word...
• The idea that you can extend your system by

adding code, rather than changing it, is called the
open-closed principle.

• The system is "open" for extension but "closed" for
modification.

• This is another vocabulary word for your coop
interview.

32

Principle 5: Favor Interfaces Over
Subclassing
• What happened to inheritance (subclassing) in this

story?
• An interface specifies some of the behavior of the

classes that implement it.
• A superclass specifies some of the algorithms of the

classes that inherit from it.
• It means that the subclasses (even those that will be

added in the future) can see some of the details of your
algorithm

• Exactly what details depend on the programming
language; let's see what happens in Typescript

33

Example: Clocks

34

export default interface AbsClock {

// sets the time to 0
reset():void

// increments the time
tick():void

// returns the current time
getTime():number

}

Some implementations of AbsClock

35

import AbsClock from "./AbsClock";

export class Clock1 implements AbsClock {
private time = 0
public reset () {this.time = 0}
public tick () { this.time++ }
public getTime(): number {

return this.time
}

}

// counts down from 0
export class Clock2 implements AbsClock {

private time = 0
public reset () {this.time = 0}
public tick () { this.time-- }
public getTime () {return (0 - this.time)}

}

// counts up from 42
export class Clock3 implements AbsClock {

private time = 42
public reset () {this.time = 42}
public tick () { this.time++ }
public getTime () {return this.time - 42}

}

Implementations all
different!

Use inheritance only when there is shared
implementation. Example:
Three Implementations of AbsClockFactory

36

interface AbsClockFactory {
instance() : AbsClock
clockType : string
numCreated() : number

}

class ClockFactory2 implements AbsClockFactory {
clockType = "Clock2"
numCreated = 0
public instance() : AbsClock {

this.numCreated++;
return new Clocks.Clock2}

public numCreated() {
return this.numCreated

}
}

class ClockFactory3 implements AbsClockFactory {
clockType = "Clock3"
numCreated = 0
public instance() : AbsClock {

this.numCreated++;
return new Clocks.Clock3}

public numCreated() {
return this.numCreated

}
}

class ClockFactory1
implements AbsClockFactory {
clockType = "Clock1"
numCreated = 0
public instance() : AbsClock {

this.numCreated++;
return new Clocks.Clock1}

public numCreated() {
return this.numCreated

}
}

Factor Out Common Portions of
Implementation Into a Superclass

37

abstract class ClockFactorySuperClass implements AbsClockFactory
{

abstract clockType: string
protected abstract buildClock() : AbsClock
protected numCreated = 0
public instance() : AbsClock {

this.numCreated++;
return this.buildClock()

}
public numCreated() {return this.numCreated}

}

Put the parts that differ into
this method

Subclasses implement only the parts that
vary

38

class ClockFactory1AsSubclass extends ClockFactorySuperClass
implements AbsClockFactory {

clockType = "Clock1"
protected buildClock() : AbsClock {

return new Clocks.Clock1}
}
class ClockFactory2AsSubclass extends ClockFactorySuperClass
implements AbsClockFactory {

clockType = "Clock2"
protected buildClock() : AbsClock {

return new Clocks.Clock2}
}

That completes
our five
principles

39

Whose principles are these?
• There are lots of lists of principles out there.
• These are ours.
• One list you should know is SOLID. This is an

acronym for:
• S: Single Responsibility
• O: Open/Closed Principle
• L: Liskov substitution principle (this has to do with

inheritance, so it's not so important for us right now.)
• I: Interface Segregation
• D: Dependency Inversion

• So we've covered 4 out of 5 of these.

40

Another set of principles
• Abstraction
• Encapsulation
• Modularity
• Hierarchy

• These are properties that good code should have;
we’re more interested in what you need to do in
order to write good code in the first place.

41

Review: Learning Objectives for this Lesson
• You should now be able to:

• Describe the purpose of our design principles
• List five object-oriented design principles and illustrate

their expression in code
• Identify some violations of the principles and suggest

ways to mitigate them

42

	CS 4530: Fundamentals of Software Engineering�Lesson 1.3 Object-Oriented Design Principles
	Outline of this lesson
	Learning Objectives for this Lesson
	The Challenge: Controlling Complexity
	Five Principles for OO Programming
	Principle 1: Make Your Interfaces Meaningful
	Review: TypeScript interfaces
	Interfaces are where we specify behaviors
	We have many classes that implement the same interface
	But the compiler only checks syntax, not semantics
	Remember: one interface/one job
	Principle 2: Depend only on behaviors, not their implementation
	Principle 2: Depend only on behaviors, not their implementation
	Your new Vocabulary Word: �Dependency Inversion
	Another vocabulary word: Composition
	Yet another vocabulary word: Delegation
	Principle 3: Keep Things as Private as You Can
	Example (1)
	Example (2)
	Example (3)
	Principle 4: Favor Dynamic Dispatch Over Conditionals
	A Tiny Shape-Manipulation System
	Naïve representation
	Let’s add a new kind of shape to the system
	We need to modify our existing code to incorporate this
	A better idea: use an interface!
	This is "classic" object-oriented design
	To add a new shape, �you just add code
	Now s.area() works on any shape
	The new version works exactly like the old version
	Adding new shapes is easy. What about adding new operations?
	Another vocabulary word...
	Principle 5: Favor Interfaces Over Subclassing
	Example: Clocks
	Some implementations of AbsClock
	Use inheritance only when there is shared implementation. Example:�Three Implementations of AbsClockFactory
	Factor Out Common Portions of Implementation Into a Superclass
	Subclasses implement only the parts that vary
	That completes our five principles
	Whose principles are these?
	Another set of principles
	Review: Learning Objectives for this Lesson

